Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Several technosignature techniques focus on historic events such as SN 1987A as the basis to search for coordinated signal broadcasts from extraterrestrial agents. The recently discovered SN 2023ixf in the spiral galaxy M101 is the nearest Type II supernova in over a decade, and will serve as an important benchmark event. Here we review the potential for SN 2023ixf to advance ongoing techonsignature searches, particularly signal-synchronization techniques such as the “SETI Ellipsoid” that identifies over time stars that could transmit signals after observing a supernovae event. We find that more than 100 stars within 100 pc are already close to intersecting this SETI Ellipsoid, providing numerous targets for real-time monitoring within ∼3° of SN 2023ixf. We are commencing a radio technosignature monitoring campaign of these targets with the Allen Telescope Array and the Green Bank Telescope.more » « less
-
Abstract A stable-frequency transmitter with relative radial acceleration to a receiver will show a change in received frequency over time, known as a “drift rate.” For a transmission from an exoplanet, we must account for multiple components of drift rate: the exoplanet’s orbit and rotation, the Earth’s orbit and rotation, and other contributions. Understanding the drift rate distribution produced by exoplanets relative to Earth, can (a) help us constrain the range of drift rates to check in a Search for Extraterrestrial Intelligence project to detect radio technosignatures, and (b) help us decide validity of signals-of-interest, as we can compare drifting signals with expected drift rates from the target star. In this paper, we modeled the drift rate distribution for ∼5300 confirmed exoplanets, using parameters from the NASA Exoplanet Archive (NEA). We find that confirmed exoplanets have drift rates such that 99% of them fall within the ±53 nHz range. This implies a distribution-informed maximum drift rate ∼4 times lower than previous work. To mitigate the observational biases inherent in the NEA, we also simulated an exoplanet population built to reduce these biases. The results suggest that, for a Kepler-like target star without known exoplanets, ±0.44 nHz would be sufficient to account for 99% of signals. This reduction in recommended maximum drift rate is partially due to inclination effects and bias toward short orbital periods in the NEA. These narrowed drift rate maxima will increase the efficiency of searches and save significant computational effort in future radio technosignature searches.more » « less
-
Abstract Recently the James Webb Space Telescope performed near-infrared spectroscopic observations of the atmosphere of a potential Hycean exoplanet, K2-18 b. These spectra provided evidence of methane and carbon dioxide in its atmosphere, along with a possible line attributed to biomarker dimethyl sulfide. In this work, we present triggered narrow-band radio observations of K2-18 b conducted using the Allen Telescope Array over 3–10 GHz, in search of signs of artificially produced radio emissions (technosignatures). We do not find any spatially isolated signals in the direction of K2-18 b, establishing lower and upper limits on the equivalent isotropic radiated power (∼1013–1016 W) of potential extraterrestrial transmitters between 3 and 10 GHz. This study emphasizes the importance of ongoing observations to further explore K2-18 b’s potential as a candidate for the detection of technosignatures.more » « less
-
ABSTRACT FRB 20220912A is a repeating Fast Radio Burst (FRB) that was discovered in Fall 2022 and remained highly active for several months. We report the detection of 35 FRBs from 541 h of follow-up observations of this source using the recently refurbished Allen Telescope Array, covering 1344 MHz of bandwidth primarily centred at 1572 MHz. All 35 FRBs were detected in the lower half of the band with non-detections in the upper half and covered fluences from 4–431 Jy-ms (median = 48.27 Jy-ms). We find consistency with previous repeater studies for a range of spectrotemporal features including: bursts with downward frequency drifting over time; a positive correlation between bandwidth and centre frequency; and a decrease in sub-burst duration over time. We report an apparent decrease in the centre frequency of observed bursts over the two months of the observing campaign (corresponding to a drop of 6.21 ± 0.76 MHz per d). We predict a cut-off fluence for FRB 20220912A of Fmax ≲ 104 Jy-ms, for this source to be consistent with the all-sky rate, and find that FRB 20220912A significantly contributed to the all-sky FRB rate at a level of a few per cent for fluences of ∼100 Jy-ms. Finally, we investigate characteristic time-scales and sub-burst periodicities and find (a) a median inter-subburst time-scale of 5.82 ± 1.16 ms in the multi-component bursts and (b) no evidence of strict periodicity even in the most evenly spaced multi-component burst in the sample. Our results demonstrate the importance of wideband observations of FRBs, and provide an important set of observational parameters against which to compare FRB progenitor and emission mechanism models.more » « less
-
Abstract Radio searches for extraterrestrial intelligence have mainly targeted the discovery of narrowband continuous-wave beacons and artificially dispersed broadband bursts. Periodic pulse trains, in comparison to the above technosignature morphologies, offer an energetically efficient means of interstellar transmission. A rotating beacon at the Galactic Center (GC), in particular, would be highly advantageous for galaxy-wide communications. Here, we presentblipss, a CPU-based open-source software that uses a fast folding algorithm (FFA) to uncover channel-wide periodic signals in radio dynamic spectra. Runningblipsson 4.5 hr of 4–8 GHz data gathered with the Robert C. Byrd Green Bank Telescope, we searched the central of our galaxy for kHz-wide signals with periods between 11 and 100 s and duty cycles (δ) between 10% and 50%. Our searches, to our knowledge, constitute the first FFA exploration for periodic alien technosignatures. We report a nondetection of channel-wide periodic signals in our data. Thus, we constrain the abundance of 4–8 GHz extraterrestrial transmitters of kHz-wide periodic pulsed signals to fewer than one in about 600,000 stars at the GC above a 7σequivalent isotropic radiated power of ≈2 × 1018W atδ≃ 10%. From an astrophysics standpoint,blipss, with its utilization of a per-channel FFA, can enable the discovery of signals with exotic radio frequency sweeps departing from the standard cold plasma dispersion law.more » « less
-
The intuition suggested by the Drake equation implies that technology should be less prevalent than biology in the galaxy. However, it has been appreciated for decades in the SETI community that technosignatures could be more abundant, longer-lived, more detectable, and less ambiguous than biosignatures. We collect the arguments for and against technosignatures’ ubiquity and discuss the implications of some properties of technological life that fundamentally differ from nontechnological life in the context of modern astrobiology: It can spread among the stars to many sites, it can be more easily detected at large distances, and it can produce signs that are unambiguously technological. As an illustration in terms of the Drake equation, we consider two Drake-like equations, for technosignatures (calculating N(tech)) and biosignatures (calculating N(bio)). We argue that Earth and humanity may be poor guides to the longevity term L and that its maximum value could be very large, in that technology can outlive its creators and even its host star. We conclude that while the Drake equation implies that N(bio) ≫ N(tech), it is also plausible that N(tech) ≫ N(bio). As a consequence, as we seek possible indicators of extraterrestrial life, for instance, via characterization of the atmospheres of habitable exoplanets, we should search for both biosignatures and technosignatures. This exercise also illustrates ways in which biosignature and technosignature searches can complement and supplement each other and how methods of technosignature search, including old ideas from SETI, can inform the search for biosignatures and life generally.more » « less
-
A growing avenue for determining the prevalence of life beyond Earth is to search for “technosignatures” from extraterrestrial intelligences/agents. Technosignatures require significant energy to be visible across interstellar space and thus intentional signals might be concentrated in frequency, in time, or in space, to be found in mutually obvious places. Therefore, it could be advantageous to search for technosignatures in parts of parameter space that are mutually derivable to an observer on Earth and a distant transmitter. In this work, we used theL-band (1.1–1.9 GHz) receiver on the Robert C. Byrd Green Bank Telescope to perform the first technosignature search presynchronized with exoplanet transits, covering 12 Kepler systems. We used the Breakthrough Listen turboSETI pipeline to flag narrowband hits (∼3 Hz) using a maximum drift rate of ±614.4 Hz s−1and a signal-to-noise threshold of 5—the pipeline returned ∼3.4 × 105apparently-localized features. Visual inspection by a team of citizen scientists ruled out 99.6% of them. Further analysis found two signals of interest that warrant follow up, but no technosignatures. If the signals of interest are not redetected in future work, it will imply that the 12 targets in the search are not producing transit-aligned signals from 1.1 to 1.9 GHz with transmitter powers >60 times that of the former Arecibo radar. This search debuts a range of innovative technosignature techniques: citizen science vetting of potential signals of interest, a sensitivity-aware search out to extremely high drift rates, a more flexible method of analyzing on-off cadences, and an extremely low signal-to-noise threshold.more » « less
-
Abstract The deaths of massive stars are sometimes accompanied by the launch of highly relativistic and collimated jets. If the jet is pointed towards Earth, we observe a ‘prompt’ gamma-ray burst due to internal shocks or magnetic reconnection events within the jet, followed by a long-lived broadband synchrotron afterglow as the jet interacts with the circumburst material. While there is solid observational evidence that emission from multiple shocks contributes to the afterglow signature, detailed studies of the reverse shock, which travels back into the explosion ejecta, are hampered by a lack of early-time observations, particularly in the radio band. We present rapid follow-up radio observations of the exceptionally bright gamma-ray burst GRB 221009A that reveal in detail, both temporally and in frequency space, an optically thick rising component from the reverse shock. From this, we are able to constrain the size, Lorentz factor and internal energy of the outflow while providing accurate predictions for the location of the peak frequency of the reverse shock in the first few hours after the burst. These observations challenge standard gamma-ray burst models describing reverse shock emission.more » « less
An official website of the United States government
